Вторник, 22.07.2025
Супер рефераты
Меню сайта
Наш опрос
Оцените мой сайт
Всего ответов: 1
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа
Главная » 2011 » Ноябрь » 17 » Скачать реферат, курсовой Реферат Теория вероятности и математическая статистика бесплатно
11:15

Скачать реферат, курсовой Реферат Теория вероятности и математическая статистика бесплатно

Скачать реферат, курсовой Реферат "Теория вероятности и математическая статистика" бесплатно

Этот реферат, курсовую работу на тему "Реферат "Теория вероятности и математическая статистика"" вы может совершенно бесплатно скачать с этого портала, как и другие работы. Эти работы помогут школьнику, студенту, абитуриенту. Необходимым условием при использовании Реферат "Теория вероятности и математическая статистика" и других рефератов с нашего порталаявляется их использование только в личных целях без коммерческой выгоды.



Пусть функция распределения является непрерывной. Найдем вероятность того, что в результате испытаний случайная величина X примет значение a, где a - произвольное действительное число.

P(X=a).

Рассмотрим неравенство:

Доказать самим.

Следовательно:

Мы впервые столкнулись с ситуацией, когда событие принципиально может произойти в результате испытания, но имеет вероятность равную 0 . В инженерном толковании это означает: в данной конечной серии испытаний данное событие никогда не произойдет.

Случайная величина X называется непрерывной, если ее пространством элементарных событий является вся числовая ось (либо отрезок (отрезки) числовой оси), а вероятность наступления любого элементарного события равна нулю.

P(afX

Если от сложного события вычесть конечное либо счетное множество, вероятность наступления нового события останется неизменной.

Функция f(x) - числовая скалярная функция действительного аргумента x называется плотностью вероятности, и существует в точке x, если в этой точке существует предел:

Свойства плотности вероятности.

1. Плотность вероятности является неотрицательной функцией.

2.

3.

4.

Следствие: Если пространством элементарных событий является отрезок числовой оси, то пространство элементарных событий формально можно распространить на всю числовую ось, положив вне отрезка значение плотности вероятности равное 0.

Второе эквивалентное определение плотности вероятности.

Если плотность вероятности в точке x существует, то P(xfXfx Dx)=f(x)Dx о(Dx). Вероятность того, что в результате испытания случайная величина примет значение в отрезке с точностью до о(Dx) равна F(x)Dx.

Пример:

Равномерное распределение.

тут p(x)=f(x).


т.к.


Экспоненциальное распределение.


Непрерывная случайная величина является математической абстракцией и в чистом виде на практике не встречается, хотя бы потому, что теоретически не может существовать измерительное устройство, вычисляющее это величину. Следовательно, всегда исследователь имеет дело со случайными дискретными величинами. На практике отрезок [a, b] разбивают на отрезки одинаковой длинны, длину устремляют к нулю. При этом x принадлежит отрезку. Вероятность того, что отрезок содержит x равна . При ситуация эквивалентна следующему: имеется бесконечное множество лотерейных билетов, один ваш. Ясно, что в конечной серии розыгрышей вы никогда не выиграете. Независимо от этого велико удобство работы с непрерывными величинами. Оно заключается в том, что вероятностные свойства задаются одной из двух функций - плотностью распределения либо плотностью вероятности.

Вероятностные характеристики непрерывных случайных величин.

Пусть имеется случайная величина, являющаяся функцией от непрерывной случайной величины X.

Y=x(x)

Математическим ожиданием непрерывной случайной величены является число:

, - плотность вероятности случайной величины.

Обоснование этой формулы.

Аппроксимируем непрерывную случайную величину Y случайной величены Y*, которая является дискретной. Пусть числовая ось - пространство элементарных событий случайной величены X, разобьем всю числовую ось на отрезки достаточно малой длины.


2n отрезков.

Если в результате испытания случайная величена X попала в отрезок с начальной вершиной xi, то случайная величена X* приняла значение x(xi) с точностью до бесконечно малой Dx - длины i-го отрезка. Вероятность того, что Y* примет значение x(xi) с точностью до бесконечно малой более высокого порядка, чем Dx, тем более точно Y* аппроксимирует Y.

Вероятность наступления x(xi) для Y* равна

, при эта сумма переходит в .

Тогда .

Самим показать, что все свойства мат. ожидания для дискретной случайной величены сохраняются для непрерывной случайной величены.

Доказать, что

Доказать самим, что свойство 1 и 2 для производящей функции в дискретном случае справедливы и для непрерывного.

Распределение Гаусса - нормальное

Случайная величина имеет нормальное распределение (распределение Гаусса) и называется нормально распределенной, если ее плотность вероятности

Из определения

функция распределения

Найдем выражение для производящей функции нормального распределения

=1 (интеграл Эйлера)

Изобразим примерный вид плотности

n(x,n,s)

v

z


Рассмотрим центрированную нормальную величину, т.е. MX=0

У центральной нормированной величины все нечетные начальные моменты равны 0

Функция Лапласа

Функцией Лапласа называется функция вида

Свойства:

1) при z>0 функция Лапласа определяет вероятность попадания нормальной случайной величины с параметрами

MX=0

DX=1

в интервале (0, z)

2)

3) - функция нечетная

Иногда в литературе встречаются два вида функций Лапласа

Функция Лапласа табулирована. Функция Лапласа используется для выполнения событий вида

для произвольных нормальных величин.

Найдем вероятность того, что в результате испытания над x произойдет сложное событие: x примет числовое значение, принадлежащее отрезку с концами (a, b).

Пример.

x - случайная величина.

f(x) - плотность вероятности.

Найти плотность вероятности g(n) случайной величины H.

Рассмотрим отрезок (h, h dh). Событию попадание H в отрезок (h, h dh) в силу однозначности функции h(x) соответствует попадание x в отрезок (x, x dx). При этом вероятности наступления такого события одинаковы:

Тогда построим функцию h(x), обратную x(h), x=x(h).

т.к.

Вероятность первого события равна

Вероятность второго события

Следовательно

Неравенство Чебышева

Рассмотрим случайную величину X с конечным мат. ожиданием и дисперсией

Для любого неотрицательного числа t вероятность наступления события

Пусть Z - непрерывная случайная величина с плотностью вероятности f(Z). Пространство событий величины Z (0; ¥). Тогда имеет место неравенство

Доказать неравенства

Рассмотрим два сложных события

a - произвольное действительное число.

Показать самим, что x - удовлетворяет и одному и другому неравенству.

Тогда справедливо

В данном случае

Равномерность неравенств при e>0

или, в частности, при a=n=MX

при e=st справедливо неравенство Чебышева.

Многомерные случайные величины.

Инженерная интерпретация.

Проводится испытание. В результате испытания фиксируется m числовых значений X1, X2, ...,Xm. Исход испытания случайный.

Пример: Испытание - реализация некоторой технологии выпуска продукта. Исход - численное значение m характеристик, оценив которые мы оценим качество продукта.

Т.к. в процессе реализации технологии на технологию действуют случайные факторы, то результат испытания неоднозначен.

Аксиоматика. Формальная вероятностная модель.

Имеется вероятностное пространство: (W, s, P). Зададим m числовых измеримых скалярных функций x1(w), ..., xm(w). Каждая из этих функций является одномерной по определению. Возьмем m произвольных действительных чисел и рассмотрим событие A.

Очевидно, что событие A является пересечением событий Ai вида:

Т.к. каждое AiÎs-алгебре, то и AÌs-алгебре. Следовательно, существует вероятность наступления события A и существует числовая скалярная функция m действительных аргументов, которая определена для всех значений своих аргументов и численно равна вероятности наступления события A.

F(x1, x2, ...,xm)=P(A)

Это m-мерная функция распределения m-мерной случайной величены.

Свойства многомерного распределения:

1. Значение функции при значении хотя бы одного ее аргумента равного -¥, равно 0, как вероятность невозможного события.

2. Значение функции, при всех значениях ее аргументов равных ¥, равно 1, как вероятность достоверного события.

3. Функция не убывает по любой совокупности ее аргументов.

4. Функция непрерывна почти всюду (для инженерной практики это означает, что на конечном, либо счетном множестве аргументов она может иметь скачки 1-го рода).

Рассмотрим арифметическое пространство и зададим полуинтервалы вида:

Доказать самим, что P(B) существует, и образ этого множества принадлежит s-алгебре по w.

Можно доказать, что:

Т.о. многомерная функция распределения позволяет в m-мерном арифметическом пространстве задать счетно-аддитивную меру - функцию на поле, порожденному всеми m-мерными полуинтервалами объема ("i, ai¹bi). Тогда построим минимальную s-алгебру на этом поле, которая называется борелевским полем (алгеброй) в m-мерном арифметическом пространстве. Любая скалярная функция m-аргументов удовлетворяет всем свойствам, приведенным для m-мерной функции распределения и однозначно задает вероятностное пространство вида:

Таким образом, для инженерного исследования задача свелась к следующему: пространство элементарных событий - это m-мерное арифметическое пространство. По результатам статистических испытаний нужно оценить m-мерную функцию распределения F(x1, x2, ...,xm). Рассмотрим числовую скалярную функцию m действительных аргументов. g(x1, x2, ...,xm). Функция g(x1, x2, ...,xm) называется борелевской, если для любого BÌb в одномерном арифметическом пространстве соответствующая . Тогда справедлива теорема, доказательство которой полностью повторяет доказательство в одномерном случае. Скалярная функция - является измеримой скалярной функцией - случайной величиной.

Двумерные случайные величины.

Рассмотрим испытание, результатом которого является появление двух чисел из некоторого конечного либо счетного множества пар чисел. Это испытание физически может быть одним испытанием (мгновенное измерение прибором величены тока и напряжения в сети), а также может быть композицией двух испытаний, каждое из которых порождает одномерную дискретную величину. Условно двумерная дискретная случайная величина обозначается как XY, либо любые две буквы латинского алфавита, либо для: X:{x1, x2, ...,xs}, Y:{y1, y2, ...,yn}, проводя испытание над двумерной случайной величиной находят одно из чисел из X либо из Y. А вероятностное пространство двумерной случайной величены формально строится так:

Двумерной случайной величиной называется система из двух одномерных случайных величин X, Y, где как X, так и Y являются дискретными случайными величинами. В пространстве элементарных событий дискретной случайной величены XY определим сложное событие A: В результате испытания над двумерной случайной величиной XY, случайная величина X приняла значение xi, случайная величина Y - любое значение.

Вводим сложное событие B: В результате испытания над двумерной случайной величиной XY, случайная величина Y приняла значение yj­.

Найдем условную вероятность:

Аналогично:

Покажем что сумма условных вероятностей: ;

Условным математическим ожиданием является выражение:

;

Условной дисперсией называется выражение:

;

.

Условное мат. ожидание и дисперсия отличаются от безусловной только тем, что в их определении подставляется условная вероятность вместо безусловной.

Условное мат. ожидание случайной величены, при условии, что другая случайная величена приняла заданное значение определяет число-точку, относительно которой группируются результаты конкретных испытаний над одной случайной величиной, при условии, что в этом испытании (над двумерной случайной величиной XY) вторая случайная величена приняла заданное фиксированное значение.

Условная дисперсия определяет степень концентрации результатов конкретных испытаний над одной случайной величиной относительно условного мат. ожидания.

При решении практических задач условное мат ожидание и условная дисперсия обычно используются в следующем случае: проводят испытание над X и Y, исследователь имеет возможность измерять результаты испытания над одной случайной величиной, измерение другой недоступно. Если условные дисперсии малы, то в качестве неизвестного значения не измеряемой случайной величены, которую она приняла в результате испытания, можно брать мат. ожидание.

Двумерные непрерывные случайные величины.

Двумерная случайная величина называется непрерывной случайной величиной, если пространством ее элементарных событий является плоскость, либо область плоскости, либо область конечной ненулевой плоскости. Очевидно что X и Y являются одномерными непрерывными случайными величинами.


Следствием этого определения является следующее: любое сложное событие размерности 1 (произвольная кривая, принадлежащая пространству элементарных событий) имеет нулевую вероятность т.к. в противном случае вероятность достоверного события никогда бы не равнялась единице. Числовая скалярная функция двух действительных аргументов называется двумерной плотностью вероятности, двумерной случайной величины XY, если для фиксированных значений своих аргументов она выполняет равенство . Приведенное здесь определение является аналогичным определению одномерной плотности вероятности.

Ниже будет выведено условие существования плотности вероятности для фиксированных x, y.

Рассмотрим произвольную область G.


Разобьем область G на множество прямоугольников, покрывающих область G. Тогда на основании 3-й аксиомы теории вероятности имеем: вероятность искомого события равна:

. Точное выражение получим перейдя к пределу: (показать самим).

Числовая скалярная функция двух действительных аргументов называется двумерной функцией распределения, если она при фиксированном числе своих аргументов численно равна вероятности наступления Fx,y(x,y)=P(Xfx, Yfy), если X, y - непрерывные случайные величины, то значение функции распределения не изменится.

Доказать:

По определению второй смешанной производной.

Рассмотрим случайную величину

Это частость наступления события А в n испытаниях

Используем неравенство Чебышева

где e - произвольное неотрицательное число

Рассмотрим

Получена теорема Бернулли.

Частость наступления произвольного события при числе испытаний стремящемся к бесконечности по вероятности сходится к теоретической вероятности наступления события.

Обоснование того, что - частость наступления события A заключается в следующем: с тоски зрения ранее приведенного определения, независимым испытаниям эквивалентны две схемы:

· проведение n раз одного и того же испытания

· проведение n независимых испытаний над n копиями одного и того же.

Аналогия: 100 раз монету подбрасывает 1 человек или 100 человек подбрасывают по одной монете.

Закон больших чисел.

Рассмотрим независимые: одинаково распределенные случайные величины X1, X2, ..., Xn с конечным мат. ожиданием и дисперсией.

Рассмотрим их среднее арифметическое

Используя вспомогательное неравенство получим

получаем

При числе испытаний, стремящихся к ¥ среднее арифметическое по вероятности сходится к математическому ожиданию.

В любом университетском учебнике доказывается сходимость с вероятностью 1.

Использование закона больших чисел.

Пусть имеется одна случайная величина X, над которой проведено n испытаний. Результаты испытаний

Тогда в силу примечания, сделанного Бернулли, эти n-чисел можно считать результатом одного испытания над n-мерной случайной величиной, у которой Xi независимы и распределены как X, т.е.

Тогда является реализацией следующего

Для справедлив закон больших чисел, следовательно является хорошей оценкой величины X.

Основы теории характеристических функций

Комплексная случайная величина Z определяется с помощью двумерной случайной величины (X,Y) следующим выражением

Операции над комплексными случайными величинами совпадают с операциями над комплексными числами.

Рассмотрим скалярную функцию случайных аргументов и числа i.

тогда в теории вероятности математическое ожидание случайной величины вычисляется по тем же формулам, что и , просто i считают постоянным параметром.

Найдем мат.ожидание случайной величины Z.

1. Для комплексной случайной величины справедливы свойства аддитивности и мультиплекативности мат.ожидания.

2. Комплексные случайные величины Z1 и Z2 называются независимыми, если независимы между собой двумерные случайные величины , т.е. попарно независимы

Пусть Z1 и Z2 независимые комплексные случайные величины. Найдем мат.ожидание произведения

3.

а) дискретный случай

б) непрерывный случай

Двумерная случайная величина XY имеет плотность вероятности f(x,y).

Характеристической функцией действительной случайной величины X называется функция

Свойства характеристической функции

1. Для дискретного случая

2. Для непрерывного случая

Будем считать, что плотность вероятности f(x) существует, тогда

Назад | Далее
В начало реферата

Если у вас есть аналогичные работы Реферат "Теория вероятности и математическая статистика" сообщите нам об этом. Также нам будет интересны рефераты, дипломные работы по теме Реферат "Теория вероятности и математическая статистика", а также курсовые работы. Присылайте их нам, помогите в учебе другим людям.
Скачайте и откройте один из архивов. После этого вам будет доступен для скачивания файл: Скачать реферат, курсовой Реферат Теория вероятности и математическая статистика бесплатно . Если файл не скачивается, воспользуйтесь дополнительной ссылкой и распакуйте следующий архив.
Скачать реферат, курсовой Реферат Теория вероятности и математическая статистика бесплатно
Зеркало: Скачать реферат, курсовой Реферат Теория вероятности и математическая статистика бесплатно
Зеркало 2: Скачать реферат, курсовой Реферат Теория вероятности и математическая статистика бесплатно
Файл: Скачать реферат, курсовой Реферат Теория вероятности и математическая статистика бесплатно - был проверен антивирусом Kaspersky Antivirus . Вирусов не обнаружено!

Просмотров: 293 | Добавил: admin87 | Рейтинг: 0.0/0
Похожие материалы:
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Поиск
Календарь
«  Ноябрь 2011  »
Пн Вт Ср Чт Пт Сб Вс
 123456
78910111213
14151617181920
21222324252627
282930
Архив записей
Супер рефераты © 2025
Сделать бесплатный сайт с uCoz