Среда, 16.07.2025
Супер рефераты
Меню сайта
Наш опрос
Оцените мой сайт
Всего ответов: 1
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа
Главная » 2011 » Ноябрь » 17 » Скачать реферат, курсовой Реферат Вторично-ионная масса спектрометрия бесплатно
11:25

Скачать реферат, курсовой Реферат Вторично-ионная масса спектрометрия бесплатно

Скачать реферат, курсовой Реферат "Вторично-ионная масса спектрометрия " бесплатно

Этот реферат, курсовую работу на тему "Реферат "Вторично-ионная масса спектрометрия "" вы может совершенно бесплатно скачать с этого портала, как и другие работы. Эти работы помогут школьнику, студенту, абитуриенту. Необходимым условием при использовании Реферат "Вторично-ионная масса спектрометрия " и других рефератов с нашего порталаявляется их использование только в личных целях без коммерческой выгоды.



Калужский Филиал

Московского Государственного

Технического Университета

им. Н. Э. Баумана

Кафедра Материаловедения и Материалов Электронной Техники

КУРСОВАЯ РАБОТА

по курсу МИМ и КЭТ

на тему:

“Вторично-ионная

масс-спектрометрия“

выполнил: студент гр. ФТМ—81

Тимофеев А. Ю.

проверил: Леднева Ф. И.

г. Калуга

1997 год.


Содержание

Введение 3

Взаимодействие ионов с веществом 3

Вторично-ионная эмиссия 5

Оборудование ВИМС. 8

Принцип действия установок. 9

Установки, не обеспечивающие анализа распределения частиц по поверхности 10

Установки, позволяющие получать сведения о распределении 11

элемента по поверхности, со сканирующим ионным зондом

Установки с прямым изображением 11

Порог чувствительности 12

Анализ следов элементов 14

Ионное изображение 16

Требования к первичному ионному пучку 17

Масс-спектрометрический анализ нейтральных 18

распыленных частиц

Количественный анализ 19

Глубинные профили концентрации элементов 22

Приборные факторы, влияющие на разрешение 23

по глубине при измерении профилей концентрации

Влияние ионно-матричных эффектов на разрешение 25

по глубине при измерении профилей концентрации

Применения 26

Исследование поверхности 26

Глубинные профили концентрации 27

Распределение частиц по поверхности, 27

микроанализ и объемный анализ

Заключение 27

Список литературы 29
Введение

Возможности получения сведений о составе внешнего атомного слоя твердого тела значительно расширялись всвязи с разработкой и усовершенствованием метода вторично-ионной масс-спектрометрии (ВИМС) и других методов. Большинство таких методов близки к тому, чтобы анализировать саму поверхность, поскольку основная информация о составе материала поступает из его приповерхностной области толщиной порядка 10А, а чувствительность всех таких методов достаточна для обнаружения малых долей моноатомного слоя большинства элементов.

Взаимодействие быстрых ионов с твердым телом приводит к выбиванию атомов и молекул материала как в нейтральном, так и в заряженном состоянии. На таком явлении сравнительного эффективного образования заряженных частиц (вторичных ионов) и на принципе высокочувствительных масс-спектрометрических измерениях и основан метод ВИМС. Хотя у него, как у любого другого метода, имеются свои недостатки, только он один дает столь широкие возможности исследования и поверхности, и объема твердого тела в одном приборе. Наиболее важными характерными особенностями метода, которые вызывают повышенный интерес к нему, являются очень низкий порог чувствительности для большинства элементов (меньше 10-4 моноатомного слоя), измерение профилей концентрации малых количеств примесей с разрешение по глубине меньше 50А, разрешение по поверхности порядка микрометра, возможность изотопического анализа и обнаружение элементов с малыми атомными номерами (H, Li, Be и т. д.)

Взаимодействие ионов с веществом

Фиг.1. Виды взаимодействий ионов с твердым телом [2].


В этом разделе рассматривается поведение ионов высоких энергий (1 - 100 кэВ), попадающих на поверхность твердого тела. Фиг.1 иллюстрирует 10 разновидностей взаимодействия ионов с поверхностью [2]. Падающий ион может обратно рассеиваться атомом или группой атомов бомбардируемого образца (1). Процесс обратного рассеяния обычно приводит к отклонению траектории иона от первоначального направления после столкновения и к обмену энергией между ионом и атомом мишени. Обмен энергией может быть упругим и неупругим в зависимости от типа взаимодействующих частиц и энергии иона.

Импульс иона может быть достаточно велик для того, чтобы сместить поверхностный атом из положения, где он слабо связан с кристаллической структурой образца, в положение, где связь оказывается сильнее (2). Этот процесс называется атомной дислокацией. Ионы с более высокими энергиями могут вызывать внутренние дислокации в толще образца (3). Если соударяющиеся с поверхностью образца ионы передают настолько большой импульс, что полностью освобождают от связей один или несколько атомов, происходит физическое распыление (4). Ионы могут проникать в кристаллическую решетку и захватываться там, израсходовав свою энергию (ионная имплантация) (5) . В результате химических реакций ионов с поверхностными атомами на поверхности образуются новые химические соединения, причем самый верхний слой атомов может оказаться в газообразном состоянии и испариться (химическое распыление) (6). Бомбардирующие положительные ионы в результате процессса оже-нейтрализации могут приобретать на поверхности электроны и отражаться от нее в виде нейтральных атомов (7). Ионы могут оказаться связанными с поверхностью образца (адсорбированными) (8). При ионной бомбардировке металлических поверхностей в определенных условиях возможно возникновение вторичной электронной змиссии (9). Наконец, если поверхностные атомы возбуждаются до ионизированных состояний и покидают образец, имеет место вторичная ионная эмиссия (10).

Замедляясь, ион передает энергию твердому телу. При анализе процессов потери энергии удобно различать два основных механизма: соударения с электронами и соударения с ядрами.

Первый механизм состоит в том, что быстрый ион взаимодействует с электронами кристаллической решетки, в результате чего возникают возбуждение и ионизация атомов кристалла. Поскольку плотность электронов в веществе мишени высока и такие столкновения многочисленны, этот процесс,

как и в случае потери энергии электронами, можно считать непрерывным .

В рамках второго механизма взаимодействие происходит между экранированными зарядами ядер первичного иона и атомами мишени. Частота таких столкновений ниже, поэтому их можно рассматривать как упругие столкновения двух частиц. Ионы высоких энергий хорошо описываются резерфордовским рассеянием, ионы средних энергий - экранированным кулоновским рассеянием, однако при малых энергиях характер взаимодействия становится более сложным.

Кроме перечисленных выше механизмов вклад в энергетические потери дает обмен зарядами между движущимся ионом и атомом мишени. Этот процесс наиболее эффективен, когда относительная скорость иона сравнима с боровской скоростью электрона ( ~106 м/с) .

Таким образом, полные потери энергии - dЕ/dz можно представить в виде суммы трех составляющих - ядерной, электронной и обменной.

При малых энергиях ионов преобладает взаимодействие с ядрами, которое приводит к появлению угловой расходимости пучка. При высоких энергиях более существенными становятся столкновения с электронами. Справедливо следующее эмпирическое правило: передача энергии кристаллической решетке осуществляется в основном за счет ядерных столкновений при энергиях меньше А кэВ, где А - атомный вес первичного иона. В промежуточном диапазоне энергий вклад потерь, обусловленных обменом заряда, может возрастать примерно до 10% от полных потерь. Зависимость энергетических потерь от энергии первичного иона показана на фиг.2.


Фиг.2. Зависимость энергетических потерь иона от энергии [2].

Фиг.3. Схематическое представление взаимодействия ионов с мишенью [2].


Неупругие взаимодействия с электронами мишени вызывают вторичную электронную эмиссию, характеристическое рентгеновское излучение и испускание световых квантов. Упругие взаимодействия приводят к смещению атомов кристаллической решетки, появлению дефектов и поверхностному распылению. Эти процессы схематически проиллюстрированы на фиг. 3.

Энергетический спектр рассеянных твердотельной мишенью ионов с начальной энергией Е0 схематически представлен на фиг.4. Здесь видны широкий низкоэнергетический (10 - 30 эВ) горб, соответствующий испусканию нейтральных атомов (распыленные атомы), и высокоэнергетический горб, расположенный вблизи энергии первичного иона Е0 (упругорассеянные ионы).


Вторично-ионная эмиссия

Основные физические и приборные параметры, характеризующие метод ВИМС, охватываются формулами (1) - (3). Коэффициент вторичной ионной эмиссии SА±, т. е. число (положительных или отрицательных) ионов на один падающий ион, для элемента А в матрице образца дается выражением

SА±=gА±САS, (1)

где gА±- отношение числа вторичных ионов (положительных или отрицательных) элемента А к полному числу нейтральных и заряженных распыленных частиц данного элемента, а СА -атомная концентрация данного элемента в образце. Множитель S - полный коэффициент распыления материала (число атомов на один первичный ион). В него входят все частицы, покидающие поверхность, как нейтральные, так и ионы. Величины gА± и S сильно зависят от состава матрицы образца, поскольку отношение gА± связано с электронными свойствами поверхности, а S в большой степени определяется элементарными энергиями связи или теплотой атомизации твердого тела. Любой теоретический способ пересчета измеренного выхода вторичных ионов в атомные концентрации должен, давать абсолютное значение отношения gА± или набор его приведенных значений для любой матрицы.

Фиг.4. Энергетический спектр электронов, рассеянных при соударении с твердотельной мишенью [2].

Вторичный ионный ток iА± (число ионов в секунду), измеряемый в приборе ВИМС, дается выражением

iА± =hASA±IP, (2)

где iА± - ионный ток для моноизотопного элемента (для данного компонента многоизотопного элемента ионный ток равен faiА±, где fa,- содержание изотопа а в элементе А). Величина hA -эффективность регистрации ионов данного изотопа в используемом приборе ВИМС. Она равна произведению эффективности переноса ионов через масс-анализатор на чувствительность ионного детектора. Множитель hA обычно можно рассматривать как константу, не зависящую от вида элемента или массы изотопа, если энергетические распределения вторичных ионов примерно одинаковы и имеют максимум при нескольких электрон-вольтах, так что зависящее от массы изменение чувствительности детектора частиц мало. Наконец, IP полный ток первичных ионов (число ионов в секунду), падающих на образец.

Конечно, величина IP связана с плотностью тока первичных ионов DP (число ионов за секунду на 1 см2) и диаметром пучка d (см). Если для простоты принять, что сечение пучка круглое, а плотность DP тока постоянна в пределах сечения, то

IP=(0,25p)DPd2. (3)

При существующих источниках первичных ионов, используемых в приборах ВИМС, плотность тока на образец, как правило, не превышает 100 мА/см2 (в случае однозарядных ионов ток 1 mА соответствует потоку 6.2 1015 ион/с). В табл. 1 приводятся типичные значения параметров, входящих в формулы (1) - (3).



Таблица 1.

Типичные значения параметров

в формулах (1)- (3) [1].

gА±

10-5,10-1

S

1,10

hA

10-5,10-2

DP

10-6,10-2 mA/cm2

d

10-4,10-1 cm


Самое важное значение в вопросе о возможностях ВИМС как метода анализа поверхностей имеет взаимосвязь между параметрами пучка первичных ионов, скоростью распыления поверхности и порогом чувствительности для элементов. Из-за отсутствия информации о такой взаимосвязи часто возникают неправильные представления о возможностях метода. Соотношения между током первичных ионов, диаметром и плотностью пучка, скоростью распыления


поверхности и порогом чувствительности при типичных условиях иллюстрируются графиком, представленным на фиг.5. Скорость удаления (число монослоев в секунду) атомов мишени при заданной энергии ионов пропорциональна плотности их тока DP, а порог чувствительности при регистрации методом ВИМС (минимальное количество элемента, которое можно обнаружить в отсутствие перекрывания пиков масс-спектра) обратно пропорционален полному току ионов IP. Коэффициент пропорциональности между порогом чувствительности ВИМС и IP определяется исходя из результатов измерений для ряда элементов в различных матрицах путем приближенной оценки, основанной на экспериментальных значениях для типичных пар элемент - матрица. При построении графика на фиг.5 предполагалось, что площадь захвата анализатора, из которой вторичные ионы отбираются в анализатор, не меньше сечения пучка первичных ионов. Данное условие обычно выполняется в масс-спектрометрии, если диаметр области, из которой поступают ионы, не превышает 1 мм.

Фиг. Зависимость между током первичных ионов, диаметром и плотностью первичного

пучка, скоростью удаления атомных слоев и порогом чувствительности ВИМС[1].

Распыление ионным пучком - разрушающий процесс. Но если требуется, чтобы поверхность оставалась практически без изменения, то анализ методом ВИМС можно проводить при очень малых скоростях распыления образца (менее 10-4 монослоя в секунду) . Чтобы при этом обеспечить достаточную чувствительность метода ( »10-4 монослоя), как видно из фиг.5, необходим первичный ионный пучок с током 10-10 А диаметром 1 мм. При столь низкой плотности тока первичных ионов ( 10-5 мА/см2) скорость поступления на поверхность образца атомов или молекул остаточных газов может превысить скорость их распыления первичным пучком. Поэтому измерения методом ВИМС в таких условиях следует проводить в сверхвысоком или чистом (криогенном) вакууме.

Указанные приборные условия приемлемы не во всех случаях анализа. Например, определение профиля концентрации примесей, присутствующих в малых количествах в поверхностной пленке толщиной свыше 5ОО А, удобно проводить при диаметре пучка, равном 100 мкм, и при скорости распыления, превышающей 10-1 атомных слоев в секунду. Еще более высокие плотности ионного тока требуются, чтобы обеспечить статистически значимые количества вторичных ионов с единицы площади поверхности, необходимые при исследовании распределения по поверхности следов элементов при помощи ионного микрозонда или масс-спектрального микроскопа. На основании сказанного и данных фиг.5 мы заключаем, что невозможно обеспечить поверхностное разрешение в несколько микрометров для примеси, содержание которой равно »10-4%, при скорости распыления менее 10-3 атомных слоев в секунду. Это взаимно исключающие условия.

Методом ВИМС анализ поверхности можно проводить в двух разных режимах: при малой и большой плотности тока, распыляющего образец. В режиме малой плотности распыляющего тока изменяется состояние лишь малой части поверхности, благодаря чему почти выполняется основное требование, предъявляемое к методам анализа самой поверхности. В режиме же высоких плотностей токов и соответствующих больших скоростей распыления проводится измерение профилей распределения элементов по глубине, микроанализ и определение следовых количеств элементов (<10-4%). В соответствии со всеми этими вариантами создан ряд приборов ВИМС, в которых применяются разные способы создания и фокусировки первичных ионных пучков и разные анализаторы вторичных ионов.

Оборудование ВИМС.

Установка ВИМС состоит из четырех основных блоков: источника первичных ионов и системы формирования пучка, держателя образца и вытягивающей вторичные ионы линзы, масс-спектрометра для анализа вторичных частиц по отношению массы к заряду (m/е) и высокочувствительной системы регистрации ионов. Для получения первичных ионов в большинстве установок используются газоразрядные или плазменные источники. Совместно с соответствующей системой формирования и транспортировки пучка эти источники обеспечивают широкие пределы скорости распыления поверхности - от 10-5 до 103 А/с. Разделение вторичных частиц по m/е производится либо магнитными, либо квадрупольными анализаторами. Наиболее широко распространенным анализатором в установках ВИМС, очень удобным при анализе состава образцов и обнаружении малых количеств (следов) элементов в них, является магнитный спектрометр с двойной фокусировкой (в котором осуществляется анализ по энергии и по импульсу), что связано с его высокой чувствительностью к относительному содержанию. Для таких многоступенчатых магнитных спектрометров фоновый сигнал, возникающий из-за хвостов основных пиков материала матрицы (рассеяние стенками, на атомах газа и т.д.), может быть сведен к уровню менее 10-9 для общего фона и всего 10-6 для масс, близких к основному пику. Все же в отдельных конкретных случаях более практичным может оказаться менее дорогой квадрупольный анализатор.

Принцип действия установок.

Фиг.6. Схема обычного метода и метода прямого изображения при

масс- спектрометрическом анализе вторичных ионов[1].

При масс-анализе вторичных ионов применяются два основных метода: обычный масс-спектрометрический и метод прямого изображения. Они схематически сопоставлены на фиг.6. При первом методе анализатор с хорошим разрешением передает на высокочувствительный ионный детектор заметную часть быстрых вторичных ионов, идущих с большой площади образца (» 1 мм2). Выделенные по массе вторичные частицы собираются в точечный фокус на входной щели детектора. В этом статическом случае получаемая информация усредняется по поверхности образца и невозможно установить, из какой точки (например области диаметром 1 мкм) поверхности приходят вторичные ионы. При методе прямого изображения в фокальной плоскости анализатора создается стигматическое ионное изображение поверхности и путем соответствующего дифрагмирования (или преобразования изображения при помощи чувствительной к электронам или ионам эмульсии) легко можно получить информацию о точках выхода ионов с данными m/e с поверхности образца.

Все установки с прямым изображением основан на идее прибора Кастэна и Слодзяна; все иные приборы представляют собой варианты обычной масс-спектрометрической методики. Для получения вторично-ионного изображения поверхности при обычном подходе необходимо проводить последовательный анализ вторичных частиц при сканировании поверхности

мишени первичным ионным пучком малого диаметра. При этом для получения изображения мишени на экране электронно-лучевой трубки (ЭЛТ) проще электрически сканировать первичный пучок, нежели механически перемещать сам образец. Электронный луч в ЭЛТ синхронизирован с первичным ионным пучком, и усиленным сигналом вторично-ионного детектора модулируются интенсивность электронного луча в ЭЛТ. Получаемое при таком методе увеличение изображения равно отношению длины строки на экране ЭЛТ к расстоянию на поверхности образца, пробегаемому первичным ионным пучком в процессе сканирования.

Все установки ВИМС позволяют осуществлять анализ поверхности и распределения концентрации элемента по глубине. Они различаются в таких важных отношениях, как порог чувствительности при детектировании, разрешение по массам, плотности тока первичного пучка, вакуумные условия в окрестности мишени, а также возможность проведения анализа распределения элементов по поверхности, или топографического (x-y) анализа, путем сканирования зондом или формирования изображения. К устройствам для топографического анализа относят лишь те, которые позволяют получить разрешение по поверхности не хуже 10 мкм. Все существующие установки ВИМС можно разделить на три группы в соответствии с принципом их устройства и пригодностью для микроанализа:

· не позволяющие осуществлять анализ распределения элементов по поверхности;

· дающие сведения о распределении по поверхности с помощью сканирующего ионного зонда;

· дающие сведения о распределении по поверхности методом прямого изображения.

Установки, не обеспечивающие анализа распределения частиц по поверхности

Ряд вторично-ионных масс-спектрометров был сконструирован для решения частных аналитических проблем или исследования различных закономерностей вторичной ионной эмиссии.

Использованные на ранней стадии исследований этого явления анализаторы с однократной фокусировкой (секторные магниты) имели весьма ограниченное разрешение по массам и низкую чувствительность, что было обусловлено большим разбросом начальных энергий вторичных ионов.

В настоящее время большое внимание уделяется квадрупольным анализаторам, поскольку они, будучи просты и недороги, позволяют получать сведения о поверхности и профиле концентрации примеси почти во всех случаях, когда не требуется информации о распределении по поверхности или очень малых количествах примеси. Добиться снижения фона при работе с квадрупольным фильтром масс можно за счет предварительной селекции вторичных ионов плоскопараллельным электростатическим анализатором с малой диафрагмой, а также внеаксиального расположения ионного детектора.

Установки, позволяющие получать сведения о распределении элемента по поверхности, со сканирующим ионным зондом

Установки ВИМС, относящиеся к этой категории, обычно называют ионными зондами. В этих установках первичный пучок анализируется по массам и может быть сфокусирован в пятно диаметром от 2 и менее до 300 мкм. Масс-спектрометр представляет собой устройство с двойной фокусировкой и хорошим пропусканием частиц, позволяющее давать стигматическое изображение при среднем разрешении по массам. Схема такого прибора приведена на фиг.7.

Фиг.7. Схема ионного микрозонда[4].

Установки с прямым изображением

Первой установкой ВИМС, которая позволила получить изображение объекта в лучах выделенных по m/е ионов и визуально наблюдать распределение элемента по поверхности, был масс-спектральный микроскоп, его схема представлена на фиг.8. Уникальная особенность масс-спектрального микроскопа - возможность наблюдать за интенсивностью вторичных ионов со специально выделенного микроучастка поверхности независимо от размеров и местоположения первичного пучка, пока хотя бы часть его попадает на интересующий нас участок поверхности. Эта возможность является ценной в некоторых случаях анализа методом ВИМС распределения элементов по поверхности и в объеме. Ниже будут рассмотрены некоторые из наиболее важных преимуществ, а также и недостатков, свойственных различным типам приборов.

Фиг.8. Схема масс-спектрального ионного микроскопа[4].

Порог чувствительности

Минимально обнаружимый уровень содержания элемента в данной матрице зависит от свойств самого элемента, химического состава матрицы, в которой он присутствует, сорта первичных ионов, их тока, попадающего на образец, телесного угла отбора частиц и эффективности прохождения вторичных ионов через анализатор, его общего фона, а также фона и эффективности детектора. Все перечисленные факторы, кроме двух первых, определяются конструкцией прибора и, следовательно, могут быть оптимизированы с целью достижения наиболее высокой чувствительности. Поскольку распыление является разрушающим процессом, для минимизации количества потребляемого материала необходимы высокоэффективные анализаторы и высокая чувствительность. Ввиду того что различные конструкции установок ВИМС предназначены либо для выявления тех или иных отдельных особенностей, либо для обеспечения наибольших удобств измерений, они весьма сильно различаются по чувствительности. Удобной мерой чувствительности может служить отношение числа регистрируемых вторичных ионов к числу первичных при неких стандартных условиях: образец, сорт первичных частиц и некоторое минимальное разрешение по массе. Установки ВИМС, позволяющие регистрировать »106 ион/с характерного элемента из оксидной матрицы (например, ионы Fe из образца Fe2O3) при токе первичного пучка 10-9 А, классифицируются как имеющие чувствительность, достаточную для обнаружения следов элементов и для микроанализа поверхности.

Химический состав матрицы образца оказывает непосредственное влияние на порог чувствительности для тех или иных элементов и является основным источником неконтролируемых изменений этой величины. Матрица влияет на порог чувствительности двояким образом: от нее зависит коэффициент SA± из-за различий в электронных свойствах материалов, и она может давать нежелательные молекулярные и многозарядные ионы, которые окажутся в масс-спектре в диапазоне масс, интересующем исследователя. Но число молекулярных ионов быстро уменьшается с ростом числа атомов, входящих в состав молекулы, и в большинстве случаев при концентрациях элемента, не превышающих 10-4, особых сложностей в связи с наложениями пиков не возникает.


Фиг.9. Участок масс-спектра вторичных ионов

флюорапатита вблизи массы 43 при разном разрешении по массам: а-300; б-1000; в-3000[1].


Перекрытие пиков от атомарных и молекулярных ионов можно выявить двумя способами: путем анализа быстрых вторичных ионов или применением анализаторов по m/е с разрешением М/DМ > 3000. В первом случае коэффициент ионной эмиссии уменьшается примерно во столько же раз, во сколько коэффициент выбивания молекулярных ионов уменьшается по сравнению с атомарными. В некоторых случаях этот метод вполне приемлем; но при решении


многочисленных задач обнаружения следов примесей или микроанализа поверхности недопустимо большое снижение чувствительности характерное для этого метода. Второй способ является более прямым и с точки зрения анализа более предпочтителен. Чтобы выявить сложную структуру отдельных пиков в масс-спектрах используют для ВИМС приборы с высоким разрешением по массе. На фиг.9, представлена форма пика с массой 43 ат. ед. при разных разрешениях анализатора. Высокое разрешение очень важно для уменьшения или исключения в идентификации пиков m/е, особенно если основной целью является обнаружение следов элементов на уровне атомных концентраций, не превышающих 10-5.

Вопрос о пороге чувствительности метода ВИМС для различных элементов исследовался многими авторами как теоретически, так и на основе результатов экспериментальных измерений. При этом были получены следующие примерные значения, подтвердившиеся в некоторых строго определенных условиях: менее 10-7 моноатомного слоя, атомная концентрация 10-9 и менее 10-18 г элемента. Но эти значения характерны лишь для некоторых частных случаев и не являются нормой на практике. Обычно мы имеем дело со сложными спектрами с многократными наложениями линий, в силу чего порог чувствительности оказывается сильно зависящим от природы матрицы образца. Поэтому, указывая порог чувствительности, необходимо указывать и соответствующие дополнительные факторы, в частности тип матрицы, и не следует делать огульные утверждения относительно того или иного элемента.

Далее

Если у вас есть аналогичные работы Реферат "Вторично-ионная масса спектрометрия " сообщите нам об этом. Также нам будет интересны рефераты, дипломные работы по теме Реферат "Вторично-ионная масса спектрометрия ", а также курсовые работы. Присылайте их нам, помогите в учебе другим людям.
Скачайте и откройте один из архивов. После этого вам будет доступен для скачивания файл: Скачать реферат, курсовой Реферат Вторично-ионная масса спектрометрия бесплатно . Если файл не скачивается, воспользуйтесь дополнительной ссылкой и распакуйте следующий архив.
Скачать реферат, курсовой Реферат Вторично-ионная масса спектрометрия бесплатно
Зеркало: Скачать реферат, курсовой Реферат Вторично-ионная масса спектрометрия бесплатно
Зеркало 2: Скачать реферат, курсовой Реферат Вторично-ионная масса спектрометрия бесплатно
Файл: Скачать реферат, курсовой Реферат Вторично-ионная масса спектрометрия бесплатно - был проверен антивирусом Kaspersky Antivirus . Вирусов не обнаружено!

Просмотров: 302 | Добавил: admin87 | Рейтинг: 0.0/0
Похожие материалы:
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Поиск
Календарь
«  Ноябрь 2011  »
Пн Вт Ср Чт Пт Сб Вс
 123456
78910111213
14151617181920
21222324252627
282930
Архив записей
Супер рефераты © 2025
Сделать бесплатный сайт с uCoz